Identification	Subject	MATH 329, Numerical Analysis, 6 ECTS		
	Department	Mathematics		
	Program	Undergraduate		
	Term	Spring, 2024		
	Instructor	Vusal Osmanov		
	E-mail:	VusalOsmanov@khazar.org		
	Phone:	(+99470) 333 33 48		
	Classroom/hours	Monday: 08:30;10:10, Thursday: 08:30;10:10		
)			
Prerequisites	MATH 105			
Language	Ü	English		
Compulsory/ Elective	Required			
Required	Corse Textbooks:			
textbooks and	1. R.L. Burden and J. D. Faires, <i>Numerical Analysis</i> , 10 th ed., 2016, Cengage Learning,			
course materials	Boston, USA, 895 p.			
	•	Han, Elementary Numerical Analysis, 3 rd ed., John Wiley, New		
	York, 2003.			
	Supplementary books			
	1. J.C. Butcher, <i>Numerical Methods for Ordinary Differential Equations</i> , 2 nd ed., John			
	Wiley, New York, 2008.			
	2. K. Atkinson and W.	Han, Theoretical Numerical Analysis, Springer, 2001.		
	3. R. Kress, Numerical	Analysis, Springer, New York, 1998.		
Course website				
Course outline	The course of Numerical Analysis is an essential at School of Science and Engineering of Khazar University. This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of some mathematical			
		problems. Topics covered include:		
		of exponential, logarithmic, and trigonometric functions;		
		imate values of square and cube root functions;		
	• Finite differences, divided differences of various orders, and their properties;			
	1 1	mials for equidistant and unequidistant nodes;		
	• Error estimation of interpolational formulas;			
	Numerical differentiation formulas;			
	 Newton-Cotes formula and its special cases; Approximation solution of system of linear algebraic equations; 			
		r non-linear algebraic equations;		
	• Euler's and Runge-Kutta (R-K) methods for the numerical solution of the Cauchy problem for ODEs;			
	-	od for second order linear differential equations;		
	Numerical methods for	-		
Course objectives		used frequently in all areas of science, such as computer science,		
9	mechanichs, physics,			
	management. Moreover, techniques of numerical analysis play an important role in			
	mathematical research on the finding the required values from the tabulated function,			
	approximating solutions of linear and non-linear algebraic equations (including system),			
	differential equations, sto	ochastics, optimization, etc.		

Learning outcomes

Upon successful completion of the course, the students will be able to:

- Understand the theoretical and practical aspects of the numerical methods;
- Solve the selected problems, both manually and by writing computer programs;
- Find the approximate values of exponential, logarithmic, and trigonometric functions;
- Apply the interpolation methods to find intermediate values in given graphical and/or tabulated data;
- Compute the integrals by the numerical methods;
- Understand the numerical techniques to find the roots of non-linear equations and solution of system of linear equations;
- Be able to use appropriate numerical methods to solve ordinary differential equations;
- Analyse the errors obtained in the numerical solution of problems;
- Compare the various algorithms with respect to the accuracy and efficiency of the solution;
- Implement numerical methods in computer software.

Teaching methods

Lecture	X
Group discussion	X
Experiential exercise	X
Course paper	X
Others	

Evaluation

Methods	Date/deadlines	Percentage (%)
Midterm Exam		30
Quizzes		20 (2 quizzes)
Activity		5
Attendance		5
Final Exam		40
Total		100

Policy

Preparation for class

The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions.

Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class periods.

Ouizzes and examinations

Quizzes may be given unannounced throughout the term. There will be no make-up quizzes.

Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Engineering and Applied Science. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Ethic

Use of any electronic devices is prohibited in the classroom. All devices should be turned off before entering class. This is a university policy and violators will be reprimanded accordingly!

	Students should not arrive in late to class!			
		Tentative Schedule		
Week	Date/Day (tentative)	Topics	Textbook/ Assignments	
1	12.02.24 12.02.24	Computing the values of exponential and logarithmic functions. Computing the values of square and cube root functions. Problem solving	Chapter 1.1,1.2 [Burden and Faires, Numerical analysis]	
2	19.02.24 19.02.24	Finding the numerical values of trigonometric functions.Interpolation. Problem solving	Chapter 1.3, 1.4 [Burden and Faires, Numerical analysis]	
3	26.02.24 26.02.24	Finding the numerical values of trigonometric functions.Interpolation. Problem solving	Chapter 1.3, 1.4 [Burden and Faires, Numerical analysis]	
4	05.03.24 05.03.24	Interpolation.Lagrange's interpolation formula and its error estimation. Numerical differentiation formulas. Problem solving	Chapter 4.1.1, 4.1.2 [K.Atkinson and W.Han, Elementary Numerical analysis]	
5	12.03.24 12.03.24	Finite and Divided differences of various orders. Newton's interpolation formulas. Newton's Forward and Backward difference formulas. Problem solving	Chapter 4.1.4, 4.1.6 [K.Atkinson and W.Han, Elementary Numerical analysis]	
6	19.03.24 19.03.24	Cubic splines Problem solving	Chapter 4.3.1, 4.3.2 [K.Atkinson and W.Han, Elementary Numerical analysis]	
7	26.03.24 26.03.24	Numerical integration. Closed Newton-Cotes formulas. Open Newton-Cotes formulas. Composite numerical integration. Round-off error stability. Problem solving	Chapter 4.3,4.4 [Burden and Faires, Numerical analysis Quiz (10 pts)	
8	02.04.24 02.04.24	Numerical integration. Closed Newton-Cotes formulas. Open Newton-Cotes formulas. Composite numerical integration. Round-off error stability. Problem solving	Chapter 4.3,4.4 [Burden and Faires, Numerical analysis]	
9	09.04.24 09.04.24	MIDTERM EXAM Problem colving		
10	16.04.24 16.04.24	Problem solving The Gauss-Siedel and Jacobi iterative techniques for system of linear algebraic equations. General iteration methods. Problem solving	Chapter 7.3,7.4 [Burden and Faires, Numerical analysis]	
11	23.04.24 23.04.24	LU factorization method for system of linear algebraic equations.	Chapter 6.4.1, 6.4.2 [K.Atkinson and	

	TBA	FİNAL EXAM	, <u>,</u>
15	21.05.24 21.05.24	Runge-Kutta (R-K) method for the numerical solution of the Cauchy problem for ODEs. Problem solving	Chapter 8.5.1, 8.5.2 [K.Atkinson and W.Han, Elementary Numerical analysis]
14	14.05.24 14.05.24	Euler's method for the numerical solution of the Cauchy problem for ODEs. Problem solving	Chapter 8.1.2, 8.2 [K.Atkinson and W.Han, Elementary Numerical analysis]
13	07.05.23 07.05.24	The secant and tangent methods for numerical solution of non-linear algebraic equations. Problem solving	Chapter 7.3.1, 7.3.2 [K.Atkinson and W.Han, Elementary Numerical analysis] Quiz (10 pts)
12	30.04.24 30.04.24	The simple iteration and halving methods for numerical solution of non-linear algebraic equations. Problem solving	Numerical analysis] Chapter 6.6.1, 6.6.2 [K.Atkinson and W.Han, Elementary Numerical analysis]
		Problem solving	W.Han, Elementary

This syllabus is a guide for the course and any modifications to it will be announced in advance.